Taking a Sharp Look at Galaxies and Gravitational Lenses

Chris Fassnacht UC Davis

Motivation

- The big goals
 - Explore the nature of dark matter
 - Quantify the substructure mass distribution in distant galaxies
 - Compare to predictions from simulations
 - Obtain independent measurements of cosmological parameters, including dark energy
- The tools
 - Gravitational lensing
 - High-resolution imaging

Take away messages

- High resolution imaging enhances our ability to detect low-mass (dark matter) substructures in galaxies
- Measuring dark energy with time-delay lenses requires high-resolution imaging

The First Tool: Strong Gravitational Lensing

Gravitational Lenses: The Basic Idea

• General relativity: mass can deflect light from its original path

$$\alpha = \frac{4GM}{c^2b} = \frac{2R_s}{b}$$

• Images of the background object will be magnified and distorted.

Gravitational Lenses: The Basic Idea

• General relativity: mass can deflect light from its original path

$$\alpha = \frac{4GM}{c(b)} = \frac{2R_s}{b}$$

• Images of the background object will be magnified and distorted.

A high degree of alignment leads to multiple images (strong lensing)

The mass of the lens (roughly) sets the angular separation of the lensed images

Basic Strong Lensing by Galaxies

Strong Lensing 101

- $\Delta t_{\text{tot}} = \Delta t_{\text{geom}} + \Delta t_{\text{grav}}$
- $\Delta t(\theta_i) = (D_{\Delta t}/c) [(1/2) |\theta_i \beta|^2 \psi(\theta_i)]$
- Images form where $d(\Delta t)/d\theta = 0$
- Measure time delays through variability
- $D_{\Delta t} = (1+z_1) (D_1 D_s / D_{1s})$

Everyday analogy of gravitational lensing

Courtesy of Phil Marshall (Oxford)

The Second Tool: Adaptive Optics Imaging

Our new approach: Use Keck adaptive optics imaging

- Use Keck adaptive optics imaging of lens systems to search for substructures and constrain cosmology
- Get resolution comparable to or better than HST, while using a mirror that has 16 times the collecting area
 - especially good for red objects that are faint at optical wavelengths

© Paul Hirst 2006

$$\theta \sim \lambda / D$$

AO vs. Space: B0128+437

Lagattuta et al. 2010

AO vs. Space: HE0435-1223

Fassnacht et al. in prep

UC Berkeley - 5 March 2013

AO vs. Space: B0631+519

Fassnacht et al. in prep

AO vs. Space: B0712+472

Fassnacht et al. in prep

AO vs. Space: B1938+666

Fassnacht et al. in prep

The search for substructure via gravitational imaging

Substructure: Theory

"Subhalo" or "substructure"

Kravtsov 2010

Substructure: Observations

Observations confront Simulations

- Simulations predict:
 - slope of mass function, α
 - normalization, f_{sub}
- MW observations don't match the simulations
- Explanations:
 - substructures are there but are not visible
 - some property of dark matter suppresses structure formation on small scales
 - the MW is an outlier
- The MW only is one system: We need better statistics!

How to make progress

- To distinguish between hypotheses, we need a method that can:
 - Detect substructure around many galaxies, in order to build up statistical samples
 - Detect substructure even if it is purely dark
 - Directly measure the masses of the substructures
- Gravitational lensing to the rescue search for gravitational signatures of substructure
 - Works for cosmologically distant galaxies
 - Works for even purely dark substructure
 - Provides a direct measurement of the substructure mass

Gravitational Imaging

- Lensed extended emission (arcs/rings) provides many samples of the lensing gravitational potential
- Look for distortions in the arcs or ring that are due to substructure.
 - Substructure can be purely dark and still be detected
- Note: this is just of several methods to find substructure in lenses.

Gravitational imaging in a groupscale lens

"The Clone" (Vegetti et al. 2010)

Gravitational imaging in a groupscale lens

Remember, larger masses mean larger image splitting

=> need better resolution to detect smaller masses

Can this work for galaxy-scale

lenses?

Simulated observations say yes

Blind test with multiple substructures

• Detect down to $\sim 10^8 \, \mathrm{M}_{\mathrm{sun}}$ near ring

(Vegetti & Koopmans 2009)

UC Berkeley - 5 March 2013

Observations Confront Simulations

- Look at simulated halos and predict the number of expected detections
- Simulations predict:
 - $-P(N_{det} | \alpha, f_{sub}, M_{lim}, N_{lens})$
 - Compare to number actually detected
- Turn around to get:
 - $P(\alpha, f_{sub} | N_{det}, M_{lim}, N_{lens})$

 $f_{sub} \sim 5\%$ within virial radius

Observations Confront Simulations

- Look at simulated halos and predict the number of expected detections
- Simulations predict:
 - $-P(N_{det} | \alpha, f_{sub}, M_{lim}, N_{lens})$
 - Compare to number actually detected
- Turn around to get:
 - $-\overline{P(\alpha, f_{sub} | N_{det}, M_{lim}, N_{lens})}$

 $f_{sub} < \sim 0.4\%$ within 10 kpc

Quantifying the substructure mass distribution

• Precision in α and f_{sub} is set by N_{lens} , N_{det} , and M_{lim}

Simulations for $N_{lens} = 30$

UC Berkeley - 5 March 2013

What sets M_{lim}?

- Angular resolution of the observations
- Signal to noise ratio of the ring
- Surface-brightness structure of the lensed object
 - lots of knots of star formation is better than a smoothly-distributed old stellar population

SHARP: The Strong-lensing High Angular Resolution Program

Collaborators

- Simona Vegetti (MIT)
- Dave Lagattuta (Swinburne)
- Matt Auger (Cambridge)
- John McKean (ASTRON)
- Leon Koopmans (Kapteyn)

SHARP Logistics

- Focus on systems with 4 lensed images or prominent arcs/rings
- For AO, need bright (R<17) tip-tilt star within ~60 arcsec
 - restricts size of available sample
- Ultimate goal for depth of AO imaging: ~3-4 hours integration time per target
 - enables search for substructure less massive than LMC/ SMC
- Goal for sample size: ~20 systems

Gravitational Imaging: B1938+666

Color: AO data Contours: Radio data from MERLIN

Lagattuta et al., 2012

 z_{lens} = 0.881 (Tonry & Kochanek 2000) z_{source} = 2.059 (Riechers et al. 2011)

B1938+666: Keck AO K'

B1938+666: Keck AO H

 $M \sim 1.7 \times 10^8 M_{sun}$

Vegetti et al. (2012)

B1938+666: NICMOS F160W

Vegetti et al. (2012)

Substructure properties

- Based on Bayesian evidence, this is a 12σ detection of the substructure
 - $\Delta \ln E = 65.0$
- Fit with an analytic model (truncated pseudo-Jaffe profile)
 - $-M_{\text{sub}} = (1.9 \pm 0.1) \times 10^8 M_{\odot}$
 - $M_{\text{sub}}(r < 600 \text{ pc}) = (1.15 \pm 0.06) \text{ x } 10^8 \text{ M}_{\odot}$
 - $M_{\text{sub}}(r < 300 \text{pc}) = (7.2 \pm 0.6) \times 10^7 \text{ M}_{\odot}$
- This is ~20 times less massive than the only other substructure detected via gravitational imaging (HST data only)

Comparison to MW satellites

Quantifying substructure (first steps)

- Use 2 systems that we've analyzed so far (B1938, J0946)
- With a flat prior on α :

$$- f_{sub} = 3^{+4} - 2\%$$

$$-\alpha = 1.0^{+0.6}$$

• With a Gaussian prior on α :

$$- f_{sub} = 1.2 \pm 0.6\%$$

$$-\alpha = 1.87^{+0.08}_{-0.04}$$

• Simulations predict:

$$f_{sub} \sim 0.1\%$$
 (with caveats)

$$-\alpha \sim 1.9$$

B1938+666 VLBI

Gravitational imaging with radio data – McKean et al., in prep

SHARP results in the literature

- SHARP –I: McKean et al. 2007, MNRAS
 - Luminous substructure in B2045+265
- SHARP 0: Lagattuta et al. 2010, ApJL
 - B0128+357 results
- SHARP **: Vegetti et al. 2012, Nature
 - B1938+666 substructure
- SHARP I: Lagattuta et al., 2012, MNRAS
 - More info on B1938+666
- SHARP II: Fassnacht et al., in prep
 - Survey description and smooth modeling
- SHARP III: McKean et al. in prep
 - Radio observations of B1938+666

Also: Suyu et al. 2012, ApJ, 750, 10

Future work

Short term

- increase the sample to ~ 20

• Midterm

NGAO on Keck (improve Strehl to 90%)

Long-term

- Pan-STARRS/LSST/Euclid, etc. should give thousands of new lenses
- TMT will give ~9 times the collecting area and ~3 times the resolution
- OMEGA provides a possible alternative path (See Keeton & Moustakas 2009)

Dark energy measurements with time-delay lenses

Motivation

Key Question: What is the nature of dark energy?

 H_0 is the single most useful complement to CMB parameters for dark energy studies [e.g. Hu 2005, Riess et al. 2009, 2011]

Motivation, continued

- Several methods to break the degeneracy
 - each provides a big improvement when combined with CMB
 - each has (possibly unknown) systematics
- So, obtain high-precision measurements with several *independent* methods to test for systematics and improve accuracy
- Lensing is an important part of this effort

$$D_{\Delta t} = \frac{c\Delta t}{\frac{1}{2}(\theta - \beta)^2 - \psi(\theta)}$$

From time delays to cosmology

$$D_{\Delta t} = \frac{c\Delta t}{\frac{1}{2}(\theta - \beta)^2 - \psi(\theta)}$$

Observables

$$-\Delta t$$
, θ , z_l , z_s

- Model of the mass distribution in the lens
 - $-\beta, \psi(\theta)$
- Cosmology

$$-D_{\Lambda t} = f(\mathbf{z}_1, \mathbf{z}_2, \mathbf{H}_0, \Omega_{M}, \Omega_{\Lambda}, \mathbf{w})$$

A very brief history of cosmology from lenses

- 1979: First gravitational lens discovered
- 1980s and early 90s:
 - Only a few lenses known.
 - Time delays are very controversial
- Mid 1990s mid 2000s:
 - Dedicated time delay programs produce high-precision measurements
 - Modeling makes unwarranted assumptions, giving big spread in derived values of H₀
- Late 2000s today:
 - Improvements in modeling and data lead to first robust high precision measurements
 - Two best cases so far: B1608+656 and RXJ1131-1231 (Suyu et al. 2010,2013)

A tale of two lenses

- B1608+656 and RXJ1131-1231 are the only two strong lens systems for which we currently have all of the required high-quality data
- Need
 - High-precision time delays
 - Well-constrained mass model
 - Redshifts of lens and background object

Measuring Δt in B1608+656

Measuring Δt in B1608+656

• Relative time delays (Fassnacht et al. 1999, 2002)

$$\Delta t_{\rm AB} = 31.5^{+2.0}_{-1.0} \text{ days}$$
 $\Delta t_{\rm CB} = 36.0 \pm 1.5 \text{ days}$
 $\Delta t_{\rm DB} = 77.0^{+2.0}_{-1.0} \text{ days}$

Fassnacht et al. (2002)

Mass models: B1608+656

 $z_{\rm d} = 0.63$ (Myers et al. 1995)

 $z_{\rm s}$ = 1.39 (Fassnacht et al. 1996)

B1608+656 provides a good opportunity to measure $D_{\Delta t}$ with high precision

- One of the biggest systematic errors for lenses: *the mass-slope degeneracy*
- This can be broken with high SNR detections of the lensed extended emission in the Einstein ring
- For B1608+656 we did this through deep (20 orbits) HST/ ACS imaging (PI: Fassnacht)
- For RXJ1131-1231 this also came from HST

Constraints from 2 lenses

Suyu et al. 2012

(BAO data from Percival et al. 2010; SN data from Hicken et al. 2009)

NB: <u>Blind analysis</u> used for RXJ1131, and will be used for all of our future lens systems.

Constraints from 2 lenses: Measurement precisions

Suyu et al. 2012

Future prospects

- Our simulations have shown that, once systematics have been controlled (e.g., mass-slope degeneracy), precision on cosmological parameters improves as ~1/sqrt(N)
 - See also Coe & Moustakas (2009), Dobke et al. (2009)
- Right now we only have 2 lenses (B1608+656 and RX J1131-1231) with all required data
- Need to increase the sample size of wellmeasured lenses

Can AO contribute?

- Quick answer: probably yes
- To break mass-slope degeneracy, need to detect arcs/rings at high SNR and *resolve them* in the radial direction
 - => need excellent angular resolution and sensitivity
- Right now, this is being approached with expensive HST observations
- AO provides an excellent alternative path

AO vs. Space: RXJ 1131

HST/ACS F814W

Keck AO Ks

Requirements and Wishes

- Diffraction-limited imaging is a must
 - need to resolve the ring in the radial direction
- Must understand the PSF
 - disentangle lens and background source emission
 - We're testing now with Keck AO data, but lack of knowledge of the PSF may be the biggest problem with current data
 - Best if we could reconstruct the PSF from the data
- Small FOV is OK
 - most lens systems are 1-3 arcsec across
 - although bigger FOV can be beneficial if a PSF star is in the field
- We need lots of potential targets, to improve statistics
 - Set by tip-tilt star availability
 - Can we use the quasar images as TT objects?

Mid-to-long-term future

- Big new surveys (Pan-STARRS, DES, Euclid, LSST) should discover hundreds to thousands of time delay systems
- Statistical power inherent in large samples can lead to significant improvements in precision of cosmographic measurements
 - e.g., Coe & Moustakas 2009
 - LSST+Planck give sub-percent precision for H_0 and w to 3% if κ_{ext} is known
 - e.g., Linder 2011

Mid-to-long-term future

- Lensing time delays give superb complementarity with SN/BAO distances plus CMB.
- For Stage III (Cosmology 2017), SL improves dark energy FOM by 30% (25 systems of 5% distances, 150 HST orbits).
- SL+SN+CMB distances do 5x better on constraining DE in presence of curvature than SN +CMB alone.
- SL with 1% systematics at z<0.6 improves SN+CMB FOM by 5x.

Linder 2011

Take-away messages

- A small sample of gravitational lens systems can produce interesting measurements of cosmological parameters
- These measurements have comparable precision to other approaches.
- They are also independent and complementary to the traditional methods.
- The lens-based measurements contain internal checks for systematics

Overall Summary

- High-resolution imaging combined with strong lensing is a powerful technique for finding (dark matter) substructures and for constraining cosmological parameters
- Current projects show the promise of these techniques, future telescopes and surveys will greatly advance the science